Higher dimensional quasi-power theorem and Berry–Esseen inequality

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theorising inequality : two-dimensional participatory justice and higher education research

This chapter discusses how Nancy Fraser’s theory of two-dimensional participatory justice may be employed in research concerned with inequalities within higher education. The main concepts of Fraser’s theory are discussed and evaluated in the light of the critical attention they have attracted. Following that, I demonstrate the empirical application of Fraser’s ideas through discussion of extra...

متن کامل

Higher-Dimensional Supertranslations and Weinberg’s Soft Graviton Theorem

Asymptotic symmetries of theories with gravity in d = 2m+2 spacetime dimensions are reconsidered for m > 1 in light of recent results concerning d = 4 BMS symmetries. Weinberg’s soft graviton theorem in 2m + 2 dimensions is re-expressed as a Ward identity for the gravitational S-matrix. The corresponding asymptotic symmetries are identified with 2m + 2-dimensional supertranslations. An alternat...

متن کامل

A Summability Factor Theorem for Quasi-Power-Increasing Sequences

Correspondence should be addressed to E. Savaş, [email protected] Received 23 June 2010; Revised 3 September 2010; Accepted 15 September 2010 Academic Editor: J. Szabados Copyright q 2010 E. Savaş. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work ...

متن کامل

Higher Order Derivatives in Costa's Entropy Power Inequality

Let X be an arbitrary continuous random variable and Z be an independent Gaussian random variable with zero mean and unit variance. For t > 0, Costa proved that e √ tZ) is concave in t, where the proof hinged on the first and second order derivatives of h(X + √ tZ). Specifically, these two derivatives are signed, i.e., ∂ ∂t h(X + √ tZ) ≥ 0 and ∂ 2 ∂t2 h(X + √ tZ) ≤ 0. In this paper, we show tha...

متن کامل

a generalized summability factor theorem for absolute summability and quasi   power increasing sequences

the object of this paper is to establish a summability factor theorem for summabilitya, , k  1 k  where a is the lower triangular matrix with non-negative entries satisfying certain conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monatshefte für Mathematik

سال: 2018

ISSN: 0026-9255,1436-5081

DOI: 10.1007/s00605-018-1215-6